Расширение сетей беспроводной передачи данных с использованием все более высоких несущих частот и скоростей передачи данных ставит все более актуальные задачи усовершенствования оцифровки сигналов. Это означает, что возрастает спрос на более усовершенствованные аналого-цифровые преобразователи АЦП. Для удовлетворения современных требований появились аналого-цифровые преобразователи с частотой дискретизации более 1 ГГц. В данной статье будет рассматриваться использование более быстрых АЦП при разработке новых приложений, а также при модернизации старых.
Вспоминаем правило Найквиста
При выборе аналого-цифрового преобразователя для высокочастотного устройства следует помнить, что частота дискретизации АЦП должна быть в два или более раза выше пропускной способности сигнала, подлежащего оцифровке. Такую частоту дискретизации называют частотой Найквиста. Обратите внимание, что используется термин «пропускная способность», а не «частота». Если входной сигнал отличен от синусоиды, то он считается комплексным. Например, импульс, который состоит из основной синусоиды и кратных гармоник в соответствии с теоремой Фурье. Модулированные сигналы также содержат широкий диапазон частот, которые необходимо учитывать при выборе частоты дискретизации.
Рассмотрим прямоугольную волну, состоящую из основной частоты синусоидальной волны и бесконечного числа нечетных гармоник. Для прямоугольного сигнала с частотой 300 МГц частота дискретизации АЦП должна быть как минимум в два раза больше частоты пятой гармоники, или 3 ГГц. Более сложные сигналы, такие как радарные или модулированные сигналы, требуют аналогично высоких темпов обработки, чтобы точно улавливать все детали сигнала.
Примером может послужить приемное устройство станции обработки LTE Advanced сигналов, которые используют агрегацию носителей для более высокой пропускной способности и увеличения скорости передачи данных. Несколько стандартных 20 МГц LTE каналов группируют для обеспечения 40-, 80-, 160 МГц полосы пропускания, чтоб обеспечить более высокую пропускную способность OFDM.
Применение высокоскоростных АЦП в различных системах
В основном высокоскоростные АЦП применяются в программно-определяемых устройствах радиосвязи (SDR). Большинство современных SDR используют архитектуру прямого преобразования (zero IF), в которой входной сигнал оцифровывается непосредственно уже после фильтрации и усиления. При работе с сигналами дециметровой или высокой частоты (ДМВ или СВЧ) аналого – цифровой преобразователь должен иметь высокую частоту дискретизации. Один из примеров – сотовый приемник базовой станции.
Также высокоскоростные АЦП могут применятся и в других системах, таких как системы РЭБ (радиоэлектронной борьбы), записывающих RF системах, в радиолокационном оборудовании. Очень часто применяют высокоскоростные аналого-цифровые преобразователи и в измерительной технике, оборудовании рефлектомерии (OTDR). Является важной частью приемников цифровых предыискажений, используемых в линейных радиочастотных усилителях мощности.
Пример современного высокоскоростного АЦП
Примером современного высокоскоростного аналого-цифрового преобразователя может послужить ADC32RF45 Texas Instruments. Это двухканальный АЦП с разрешением 14 бит и конвейерной архитектурой. Максимальная частота дискретизации составляет 3Гвыборки/с и подходит для приемников прямого преобразования RF беспроводных сетей в популярных сотовых диапазонах от 1700 МГц до 2000 МГц. Пропускная способность задается частотой дискретизации деленной на два и для данного АЦП максимальная пропускная способность составит 1,5 ГГц. В цепи сигнала могут устанавливаться фильтры и усилители сигналов. Также данный аналого-цифровой преобразователь имеет свободный от паразитных составляющих диапазон (SFDR) 75 дБ, отношение сигнал/шум (SNR) 61,5 дБ и уровень шумов –155 dBFS/Гц.
Ниже показана блок схема ADC32RF45 Texas Instruments используемая в SDR приемниках прямого преобразования:
Входной полосовой фильтр выбирает требуемый сигнал, малошумящий усилитель усиливает его, после чего сигнал попадает на цифровой усилитель с переменным коэффициентом усиления, который обеспечивает надлежащий уровень входного сигнала для аналого-цифрового преобразователя. Внеполосные фильтры предотвращают наложения спектров. АЦП работает с внешним синтезатором PLL и очистителем джиттера. Он подключается к процессору DSP с помощью интерфейса JESD2048.
Среди продуктов, которые используют ADC32RF45, присутствуют и Pentek’s FlexorSet Software Radio Modules. Данные модули разработаны для помощи инженерам при проектировании специализированного оборудования связи и для проведения экспериментов с различным оборудованием SDR. Модули предлагают два канала АЦП и два канала ЦАП (цифро-аналоговый преобразователь). Xilinx FPGA с внутренним программным обеспечением для сбора данных и генерации сигнала ЦАП облегчает проведение экспериментов.
Требования при проектировании
Наиболее важным этапом проектирования с применением ADC32RF45 будет правильный подбор элементов входной цепи. В частности, сглаживающие внеполосные фильтры должны соответствовать входному сопротивлению АЦП. Это имеет важное значение для обеспечения максимума в полосе плоскостности фильтра и желательно вне зоны отторжения.
Для упрощения проекта рекомендуется использовать S параметры (параметры рассеивания). S-параметры в частотной области связанны с величинами моделирования поведения радиочастотных схем и компонентов. Эти комплексные значения, как правило, представлены в матричной форме, которой можно манипулировать, чтобы проиллюстрировать поведение и производительность схем и компонентов. Они предпочтительнее при проектировании систем связанных с линиями передач, фильтров и других высокочастотных устройств.
Кроме того, полная эталонная конструкция с модулем оценки (EVM) поможет ускорить и упростить процесс проектирования.