
Измерение – это сравнения физической величины, которая измеряется, с некоторым значением такой же величины, принятым за единицу. Они измеряются специальными устройствами — средствами измерения. Поскольку не все приборы обладают абсолютно одинаковыми характеристиками существуют различные методы измерений, методы оценки измерений, а также погрешности при измерениях.
Измерения проводят прямым и косвенным путем
Прямые –это когда нужное значение измеряемой величины определяется по шкале (дисплею) прибора.
К таким относятся измерение электроэнергии счетчиком, напряжения и тока – амперметром и вольтметром соответственно и пр.
Косвенное — искомое значение нужной величины находят на основании аналитической зависимости (например формулы) между необходимой величиной и величинами, полученными при помощи прямых измерений. То есть эти измерения позволяют сократить количество проводимых измерений, а вычислить нужные значения с помощью формул. Например, измеряв U и I вычисляем R —
Измерения могут проводится различными способами и, соответственно, средствами. Соответственно такие измерения нужно оценить, для этого существуют методы непосредственной оценки и методы сравнения.
Методы непосредственной оценки и методы сравнения
Непосредственная оценка. При применении данного метода значение нужной величины вычисляют по шкале прибора (тока — по амперметру, напряжения — по вольтметру и пр.). Он довольно прост, но не отличается сравнительно высокой точностью.
Сравнения. Состоит в том, что величина, которая измеряться, сравнивается с величиной, воспроизводимой мерой. Он обеспечивает точность, большую, чем метод непосредственной оценки, но процесс измерения значительно усложняется. У метода сравнения есть несколько разновидностей: дифференциальной, нулевой и замещения.
При нулевом методе стараются свести влияние на измерительное устройство измеряемых величин до нуля. Пример — с помощью уравновешенного моста для измерения электрического сопротивления.
При методе замещения величину которая подлежит измерению замещают известной величиной, которая воспроизводится мерой. При этом, изменяя известную величину, добиваются точно такого же показания прибора, как и то, которое действовало при действии измеряемой величины. Таким образом устанавливают погрешность.При использовании дифференциального метода разность между величиной и измеряемой величиной, воспроизводимой мерой действуют на измерительный прибор. Пример — с помощью неуравновешенного моста измерение электрического сопротивления.
Известно, что приборов с точностью абсолютной не существует в мире, то каждый прибор характеризуется погрешностью. Они делятся на относительные, абсолютные и приведенные.
Погрешность абсолютная А — это разность между фактическим значением шкалы прибора А и действительным значением измеряемой величины АД:
Погрешность относительная — это отношение погрешности абсолютной ∆ к фактическому значению измеряемой величины А. Выражается она в процентах:
Погрешность приведенная — представляет собой ничто иное как отношение абсолютной погрешности ∆ к нормирующему значению АN измеряемой величины:
Обычно нормирующее значение принято принимать равным верхнему пределу измерения для прибора.
Погрешности бывают: систематические и случайные
Погрешность систематическая. Она остается постоянной, но может и меняться по любому, но определенному закону. Значение ее всегда учитывается путем введения соответствующих поправок, для минимизации влияние погрешностей.
Погрешность случайная.Она появляется непредсказуемо и изменяется по случайному закону. Их нельзя исключить, но можно систематизировать и минимизировать их влияние произведя несколько измерений.
Также на появление погрешностей производит влияние и условия эксплуатации приборов. Поэтому, погрешности могут быть двух видов: основная и дополнительная.
Погрешность основная. Она появляется на измерительных приборах, которые находятся в нормальных условиях эксплуатации (атмосферное давление, влажность, температура внешней среды, напряжение и пр.).
Погрешность дополнительная. Она происходит тогда, когда устройство не эксплуатируется в нормальных условиях.
Уровень точности приборов характеризуется классом точности. Для электроизмерительных приборов установлены такие классы точности как: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5 и 4.
Цифры эти указывают указывают основную приведенную погрешность γ, которая показывается в процентах. Абсолютная ∆ и относительная δ погрешности могут быть представлены в таком виде:
Из данной статьи можно сделать вывод, что при измерении электрических величин следует учитывать класс точности прибора и условия окружающей среды. Для более высокой точности измерений необходимо использовати различные методы измерений. Для исключения влияния случайных факторов нужно провести одно и тоже измерение несколько раз.