
Туннельный диод — высокопроводящий, сильно легированный диод на базе p-n перехода, в котором ток индуцируется из-за туннелирования.
Туннелирование или туннельный эффект — это явление проводимости в полупроводниковом материале, в котором носитель заряда «пробивает» барьер, а не поднимается через него.
Туннельный диод представляет собой сильно легированный диод на базе p-n перехода. Концентрация примеси в обычном диоде составляет около 1 части на 108. А в туннельном диоде концентрация примеси составляет около 1 части на 103. Из-за сильного легирования полупроводник проводит ток, как в прямом направлении, так и в обратном направлении. Это быстрое переключающее устройство. Он используется в высокочастотных преобразователях, компьютерах и усилителях.
Обозначение туннельного диода на схеме
Обозначение туннельного диода на электрических схемах показано на рисунке ниже. Катод и анод являются двумя выводами из полупроводникового материала. Материал р-типа притягивает электроны, и поэтому он называется анодом, в то время как материал n-типа испускает электроны и называется катодом.

Конструкция туннельного диода
Туннельный диод имеет два вывода, а именно анод и катод. Полупроводник p-типа действует как анод, а полупроводниковый материал n-типа действует как катод. Для изготовления туннельного диода используются арсенид галлия, германий и антимонид галлия.

Отношение пикового значения прямого тока к значению тока в долине максимально в случае германия и минимально при использовании кремния. Следовательно, кремний не используется для изготовления туннельного диода. Плотность легирования туннельного диода в 1000 раз выше, чем у обычного диода.
Вольт-амперная характеристика туннельного диода
При прямом смещении туннельная проводимость наступает в диоде из-за их сильного легирования. Ток в диоде достиг своего максимального значения IP при подаче на него напряжения Vp. При дальнейшем увеличении напряжения ток через диод уменьшается. И он продолжает уменьшаться, пока не достигнет своего минимального значения. Это минимальное значение тока называется током впадины Iv.

Приведенный выше график показывает, что при переходе из точки А в точку В величина тока уменьшается с ростом напряжения. Итак, от A до B на графике показана область отрицательного сопротивления туннельного диода. Данная область показывает наиболее важное свойство диода. Здесь, в показанной области, туннельный диод отдает энергию, а не поглощает ее.
Принцип работы туннельного диода
Когда туннельный диод находится в состоянии равновесия, или мы можем сказать, что на диод не подается напряжение, в этом случае зона проводимости полупроводникового материала n-типа перекрывается с валентной зоной материала p-типа. Энергетические уровни дырок и электронов на стороне p и n соответственно остаются одинаковыми.
Когда температура повышается, электроны переходят от зоны проводимости n-области к валентной зоне p-области. Аналогично дырки, переходят от валентной зоны р-области до зоны проводимости n-области. Естественно, для туннельного перехода электрона через барьер из одной области в другую необходимо, чтобы по другую сторону барьера (место куда переходит электрон) имелось свободное состояние. Нулевой ток протекает через диод в состоянии равновесия.

Когда небольшое напряжение подается на туннельный диод, величина которого меньше напряжения в области обеднения, тогда электроны не пересекают область обеднения, и через диод протекает нулевой ток. Немногие электроны из n-области зоны проводимости туннелируются в p-область валентной зоны. Из-за туннелирования электронов небольшой прямой ток течет через область обеднения.

Когда на туннельный диод подается полное напряжение, создается определенное количество электронов и дырок. Увеличение напряжения увеличивает перекрытие проводимости и валентной зоны. Уровни энергии валентной зоны n-стороны и зоны проводимости p-стороны равны. Таким образом, через туннельный диод протекает максимальный ток.

Когда прикладываемое напряжение еще больше увеличивается, валентная зона и зона проводимость туннельного диода слегка смещаются. Но зона проводимости области n-типа и валентная зона области p-типа все еще перекрываются. Небольшой ток течет через диод, и, таким образом, ток начинает уменьшаться.

Если напряжение на проводнике сильно увеличивается, то туннельный ток падает до нуля. В этом состоянии зона проводимости n-стороны и валентная зона р-стороны не перекрывают друг друга, и туннельный диод ведет себя как обычный диод с PN-переходом. Если величина напряжения больше, чем контактная разность потенциалов, через диод течет прямой ток.
Понятие отрицательного сопротивления в туннельном диоде?
На графике выше показано, что между точкой Iv и Ip ток начинает уменьшаться, когда на него подается напряжение. Эта область графика называется областью отрицательного сопротивления. Это самая важная характеристика туннельного диода. В этой области туннельный диод генерирует энергию, а не поглощает ее.
Эквивалентная схема туннельного диода показана на рисунке ниже. Rs представляет сопротивление выводных клемм туннельного диода и полупроводникового материала. Оно примерно равно 5 Ом. Ls — индуктивность выводных клемм, и она почти равна 0,5 нГн. Cd — это диффузионная емкость перехода, и ее величина лежит в диапазоне от 5 до 100 пФ.

Преимущества и недостатки туннельного диода
Туннельный диод имеет низкую стоимость. У него низкий уровень шума, а его изготовление также очень просто. Диод дает быстрый отклик, и он умеренный в работе. Туннельный диод работает на малой мощности.
Недостатком туннельного диода является то, что выходное напряжение диода не является стабильным. Это двух контактное устройство, но его входные и выходные цепи не изолированы друг от друга.
Применение туннельного диода
Туннельный диод может использоваться в качестве усилителя и генератора для обнаружения малых высокочастотных сигналов или в качестве коммутатора. Это высокочастотный компонент, потому что он очень быстро реагирует на изменение значения входного сигнала.
Туннельный диод не получил слишком широкого применения, так как это слаботочное устройство.