
В случае потенциального поля напряженность поля Е может быть выражена через градиент потенциала. При этом приходим к выражению

содержащему двойную дифференциальную операцию: дивергенцию от градиента. При использовании декартовой системы координат легко записать эту операцию через соответствующие производные. Действительно, представляя в формулу (1) составляющие grad φ как:

Находим, что:

Операция div grad носит название лапласиана и обозначается знаком Δ. Используя оператор набла, рассматриваемую операцию можно представить как наблу квадрат, таким образом:

В случае декартовых координат и в применении к скалярной функции можно всегда считать операции ∇2 и Δ тождественными.
Уравнение (1) является основным уравнением потенциального электрического поля и носит название уравнения Пуассона.
В области поля, где заряды отсутствуют (где ρ = 0), уравнение (1) упрощается, так как в его правой части оказывается нуль. В последнем случае уравнение называют уравнением Лапласа.
Уравнение

и было названо дифференциальным уравнением электрического потенциального поля.
Рассмотрим несколько примеров.
Пример 1
В некоторой области поля потенциал изменяется по закону:

Содержится ли в этой области объемный заряд и чему он равен?
Решение
Путем прямого дифференцирования найдем:

Уравнение Лапласа удовлетворяется (объемный заряд равен нулю).
Пример 2
То же, что и в предыдущем примере, но описанное следующим уравнением:

Решение
В таком случае:

Очевидно, что правая часть данного равенства в общем случае не равна нулю.
Примечание к примерам 1 и 2. Из рассмотрения встретившихся видов произведений можно сделать более общий вывод:
Произведение типа

всегда удовлетворяет уравнению Лапласа (первый множитель в формуле (5) cos или sin, а второй ch или sh).