У ПЛК появился конкурент?

Одним из ключевых назначений автоматизации является наблюдение за изменением состояния объекта и способность контролировать этот процесс. Снижение процессов изменений приводит к повышению производительности и эффективности. Машинное зрение и управление движением помогают уменьшить изменения и добавить гибкости в современные системы автоматизации. В свою очередь, увеличение гибкости и функциональных возможностей систем автоматического регулирования может поставить некоторые более старые системы на грань возможностей обработки.

В настоящее время программируемые логические контроллеры ПЛК являются нормой в системах автоматизации. Часто к стоимости новых технологий добавляются возможности модернизации оборудования и/или дополнительные возможности по внедрению новых операционных систем. Однако, добавление устройств управление движением или пользовательских модулей ввода в программируемый логический контроллер ПЛК, также может значительно отразится на стоимости всего оборудования.

Относительные затраты, расширяемость, функциональность, а также реализация пользовательских опций – требования к современным промышленным контроллерам. Поскольку запросы к скорости обработки данных, памяти, мощности в последнее время значительно увеличились, сможет ли ПЛК и далее оставаться основным средством автоматизации производственных систем?

Процесс управления

В простейшей своей форме процесс управления состоит из трех основных компонентов – датчика, контроллера, исполнительного механизма. Датчик собирает информацию об управляемом объекте и передает ее контроллеру, который обрабатывает полученные данные и выдает сигнал управления исполнительному механизму. Такая конструкция носит название системы с замкнутым контуром или с обратной связью.

Например, мониторинг газов и температура в азотной печи может играть важную роль для термической обработки,  а данные о влажности в помещении или вибрациях не иметь вообще никакого отношения к процессу термической обработки. Добавление последних данных в систему автоматического управления не принесет абсолютно никакой пользы, а только усложнит ее и увеличит стоимость. Можем сделать вывод, что сложность приобретает решающее значение, так как она снижает затраты на проектирование, программирование узлов, устранение неполадок, а также позволяет избежать установки компонентов, которые не несут практической пользы.

После сбора датчиками, информация поступает в контроллер, который играет роль «мозга». Он будет обрабатывать полученную информацию на основании алгоритмов и программ, заданных ему программистом. Если значение не будет укладываться в границы установленных пределов, то контроллер пошлет сигнал на исполнительный механизм для исправления ошибки, и так будет происходить пока ошибка не войдет в допустимые границы. Исполнительный механизм – это мышцы системы автоматического регулирования (САУ). Именно он будет оказывать физическое воздействие на контролируемую систему. Исполнительными механизмами для САУ могут быть различные электроприводы, гидроприводы, пневмоприводы и другие механизмы.

konkurenty-plk

«Контроллер осведомлен о происходящем и может принимать решения. ПЛК бесспорно лидирующая фигура в промышленной автоматизации» — говорит Matteo Dariol, инженер Bosch Rexroth. «Аббревиатура содержит «программируемый логический», так как в начале электронной революции в 1960-1970хх годах управляющие устройства начали строиться с помощью дискретных электронных компонентов. До этого изменение спецификации проекта приводило к перепроектированию и реинжинирингу всей логики управления вместе с изменением физических элементов устройств управления. С появлением программируемого логического контроллера ПЛК усилия по изменению алгоритма управления практически полностью заключаются только в изменении программного обеспечения».

Современные ПЛК являются вполне надежными устройствами, а их языки программирования стандартизированы. Среды разработки программного обеспечения для программируемых логических контроллеров пока не имеют общих единых стандартов, так как все основные игроки рынка электронных компонентов предлагают свои собственные уникальные решения. Программирование, а также поиск и устранение неисправностей в ПЛК может быть даже легче, чем в персональном компьютере ПК, который каждый из нас, казалось бы, знает очень хорошо. Программируемый логический контроллер ПЛК имеет модульную структуру и возможность подключения различных модулей в зависимости от требований проекта: дополнительные порты ввода/вывода, модули безопасности, а также конкретные коммуникационные карты Ethernet и это лишь несколько примеров.

Модульная конструкция дает программируемым логическим контроллерам основное преимущество – расширяемость. Есть и другие преимущества, такие как стоимость, простота устройства и прочность конструкции. Такие элементы САУ как реле, периодически нужно осматривать и проводить замену, и тут появляется еще одно преимущество ПЛК – минимум движущихся механических частей. Существуют возможности интеграции с более сложными системами, например с ПК контроллером.

В результате, многие производственные линии, которые уже используют ПЛК, скорее всего, будут работать с ними долгие годы. Привычность и простота дает очень хороший импульс, который будет продвигать программируемый логический контроллер в будущем. Тем не менее, в последние годы виден очень большой прогресс в развитии промышленных компьютеров, и это напрямую связано с развитием систем машинного зрения, более усложнившейся робототехники, а также развития промышленных интернет вещей IIoT.

Ограничения ПЛК

ПЛК имеет ограниченную память, программное обеспечение и периферийные возможности, по сравнению с персональным компьютером ПК. Управление движением (например, робототехника или сложная автоматизированная система) требует огромного количества входов/выходов, требующих дополнительных модулей управление ПЛК или внешней электроники. Тем не менее, стоит отметить, что компьютер способен обрабатывать гораздо большее количество информации, причем быстрее, что может значительно уменьшить физический размер и обеспечить необходимую вычислительную мощность для внедрения систем машинного зрения, управления движением и обеспечить быструю обработку больших потоков данных. Постоянный рост обрабатываемой информации связан с постепенным внедрением некоторыми компаниями промышленных интернет вещей IIoT в производственные линии и промышленные объекты, которые требуют больших вычислительных мощностей.

tipichnaya-svyaz-dlya-promyshlennoj-avtomatizacii-profibus

Оригинальные производители оборудования (англ. original equipment manufacturer OEM) способны увеличить производительность оборудования, позволяя машинам одновременно выполнять несколько операций. Максимально интенсивные И/ИЛИ вычисления критически важных процессов, запущенных одновременно, может привести к перегрузке программируемого логического контроллера. Для уменьшения времени обработки критически важных процессов машины могут использовать несколько вычислительных платформ. Как правило, они включают в себя один или несколько контроллеров движения и один или более наблюдающий процессор, который поддерживает интерфейс оператора для программирования, информации работы машины, сбора данных, функции техподдержки. Однако, использование нескольких процессоров является более дорогим. Новое программное обеспечение, ориентированное на платформы ПК, может помочь решить данную проблему, хотя…

ПК не так надежен и ему трудно «выживать» в промышленных условиях, таких как повышенная запыленность и влажность. Использования ПК с боле сложным программным обеспечением или большим количеством программных опций, занимает гораздо больше времени для обучения обслуживающего персонала. Усовершенствованное программное обеспечение может потребовать наличие программиста для проведения технического обслуживания, а также выполнение ремонтных работ и установки обновлений. Программное обеспечение ПЛК может быть базовым, но имеющие свои проверенные временем стандартные языки, которые могут обеспечить долговечность устройства, несмотря на его скорость и линейный характер.

ПЛК обычно используют в отрасли стандартный набор языков программирования (МЭК 61131-3), в том числе LAD диаграммы. LAD диаграммы строятся по аналогии с электрическими схемами, что позволяет значительно упростить обучение персонала, проведения технического обслуживания и ремонта. В большинстве случаев вполне возможно обойтись без программиста. Другой язык из стандарта МЭК 61131-3 — структурированный текст, который похож на язык «высокого уровня». Тем не менее, использование других нестандартных языков высокого уровня, таких как C ++ или Visual Basic, может быть трудно с ПЛК. Только в последнее время новые программные инструменты позволяли пользователям общаться с ПЛК так, как если бы это был обычный ПК.

relejnaya-logika-dlya-programmirovaniya-plk

Последовательная программа ПЛК сканирует все инструкции в каждом цикле. Цикл сканирования занимает примерно 10 мс или чуть больше. После завершения выполнения всех инструкций программа переходит к следующему сканированию. Если инструкция не выполняется в установленное время, то это вызывает сообщение об ошибке и выполнение программы прекращается. Это программное обеспечение жесткого времени может ограничивать продолжительность программы и любые входные сигналы с частотой менее 100 Гц.

programma-dlya-plk

Например, если необходимо обрабатывать сигнал от датчика скорости с номинальными оборотами 1200 об/мин (частота сигнала 1200/60 = 200 Гц), микроконтроллер на базе ПЛК не может корректно измерять скорость используя такой вход. Необходима интеграция специального модуля с декодером или счетчиком на интегральных микросхемах, который преобразует сигнал от датчика в нормально-обрабатываемый микроконтроллером. Такие преобразовательные модули часто используются во многих системах. Также стоит отметить и необходимость модулей вывода на примере управление соленоидом с частотой работы ШИМ в 10 кГц. Для управления таким устройством с помощью ПЛК необходим модуль вывода с ШИМ генератором. Добавление таких модулей увеличивает стоимость системы в 2-3 раза.

Следующее поколение ПЛК

Новая система имеет название программируемого контроллера автоматизации (агл. programmable automation controller  (PAC)) способного решить некоторые проблемы ПЛК. Некоторые специалисты утверждают, что программируемый контроллер автоматизации (ПКА) более коммерческое название, но это не совсем так. К сожалению, существуют некоторые различие между их определениями, а с технологической точки зрения принципиальные различия между ними найти довольно трудно.

ПКА, как правило, включают в себя функциональные возможности ПЛК. Оба являются цифровыми устройствами, но ПКА предоставляет расширенные возможности программирования и часто имеют более расширенную функциональность, память и периферические способности. ПКА предлагает более сложные архитектурные системы в случае необходимости большей связности вводов/выводов. Более того, он имеет обычно встроенные возможности передачи данных из памяти на USB накопитель, а также часто присутствует возможность прямого взаимодействия с базами данных.

Дополнительные возможности программного обеспечения звучит, конечно, хорошо, однако стоит отметить, что не все ПКА могут поддерживать стандартные языки МЭК 61131-3, что может привести к дополнительным проблемам при программировании и обслуживании.

Существуют различные модели этих устройств. ПКА могут предлагать модели сосредоточенные на системах машинного зрения или другие, предназначенные для одновременного контроля нескольких процессов. Выбор модели или технологии должны учитывать и требования будущего (модернизация и расширение производства), и стандарты (например, безопасности). Планирование может продлить срок службы контроллера путем удовлетворения будущих потребностей, но также и заложить фундамент под использования промышленных интернет вещей IIoT и децентрализованного управления.

ПЛК все еще актуальны, однако, развитие систем машинного зрения, динамических роботизированных процессов и управления движением, стремление к большей автоматизации производства с использованием IIoT, требуют от программируемого логического контроллера значительно большей мощности обработки данных или памяти, которые он не в состоянии обеспечить. Децентрализованная технология может помочь расширить устаревшую линейку путем предложения продуктов типа SoCs и FPGAs, которые обрабатывают информацию непосредственно на самом датчике. Это означает, что добавление сложного процесса к существующей линии может не требовать обязательной установки дорогого ПКА, но будет необходима группа интеллектуальных датчиков, способных самостоятельно хранить и обрабатывать данные своих измерений.

Возможно ли применение обеих вариантов?

Еще более запутывает дискуссию о ПЛК и ПКА то, что возможно построение системы управления без любого из них. Сеть интеллектуальных датчиков и программного обеспечения можно комбинировать для устранения или большей децентрализации программируемых контроллеров во всех цехах предприятия. SoCs является одной из технологий, которые могут децентрализовать процесс. Однако, не стоит забывать, что слишком много протоколов на одном SoCs может привести к увеличению количества циклов проверки, необходимых для проверки процесса или его части, что вызовет режим, аналогичный перегрузке программируемого логического контроллера.

Более того, существует целый ряд технологий, позволяющих совместную работу программируемых логических контроллеров, технологий децентрализации, программируемых контроллеров автоматизации, для максимально эффективной работы предприятия. Необходимо предпринять несколько основных шагов для определения, какие технологии, возможно, будут необходимы.

«Во-первых, нужно понять, какие факторы важны для успешного выполнения операций и уровень устаревания, который допустим для устройства или линии» — говорит Джули Робинсон, менеджер по маркетингу, Rockwell Automation. «После того, как риски определены, пользователи должны разработать стратегию для смягчения и, в конечном счете, устранения этого риска, и планировать первое обновление работы ячеек. Некоторые факторы, влияющие на эти изменения, включают в себя:

  • Совмещение будущих потребностей производства или улучшение текущей производительности;
  • Соответствие последним требованиям безопасности и нормативным документам;
  • Повышение гибкости производственных систем для эффективного расширения производства или обновления оборудования;
  • Повышение эффективности использования активов за счет сокращения простоев;
  • Повышение мер безопасности производства и сохранности оборудования;

Также пользователи должны понимать, какие изменения вносились в оборудование в течении нескольких лет работы завода или фабрики, что должно отображаться на схемах и чертежах.

Точная документация на устаревшее оборудование очень сильно поможет в интеграции нового оборудования. А если децентрализованная платформа уже интегрирована, то документация становится еще более важной. Децентрализованные контроллеры показали  меньшее время при установке нового оборудования. В традиционной, централизованной системе, инженеры или обслуживающий персонал должны подключатся к программируемому логическому контроллеру для обнаружения проблем и скачки управляющей программы в случае необходимости. Хорошо спроектированная система должна быть простой в эксплуатации, обслуживании, а также масштабируемой.

Для того, чтобы произвести подключение к децентрализованной системе, специалисты  не должны физически ходить «вокруг устройства». Для устранения этой проблемы обслуживающие оборудование компании стараются соединять по несколько систем, которые технологически совместимы. Часто это означает интеграцию старых систем с новыми технологиями и программным обеспечением.

В настоящее время очень малый процент хочет вкладывать в модернизацию работающего оборудования, если оно только не безнадежно устарело. Тем более решения о модернизации в будущем закладываются при проектировании оборудования, а часто проектированием различного оборудования занимается не одна компания, и в будущем при модернизации могут возникать конфликты.

Прежде чем выбрать оптимальную технологию для  вашего оборудования важно понимать, что данная технология должна быть совместима с вашими целями не только сейчас, но и в будущем, и предлагает необходимые функции без излишней сложности. Для многих компаний трудно, и в некоторых случаях бессмысленно, содержать экспертов в каждой области, именно поэтому в последнее время начинает набирать обороты промышленные интернет вещей IIoT.

Термины и определения

Разница между ПЛК и ПКА может проникать и в другие технологии. Например, системы на кристалле (СнК), с английского System-on-a-Chip (SoC), встроенные компьютеры (embedded PC) и программируемая пользователем вентильная матрица (FPGA) предлагают собой некоторые технологии, которые способны заменять или расширять возможности программируемых логических контроллеров. Тем не менее, для некоторых технологий пока не существует устоявшихся определений, и ученые спорят о более правильном описании их. Но мы постараемся привести некоторые основные определения.

Программируемый логический контроллер ПЛК

Представляет собой цифровой компьютер, предназначенный для автоматизации промышленных систем. Он специально разрабатывался для работы в жестких условиях эксплуатации, таких как температурные диапазоны, давление, электрические шумы, вибрации и другие неблагоприятные факторы промышленной среды. Он имеет наиболее важную особенность, которая, собственно, и привело его к такой популярности – это жесткая система реального времени.

Режим реального времени

Многие понимают режим реального времени как выполнение задачи «как можно скорее». Но это не так. Система реального времени гарантирует, что все входы,  выходы и вычислительные процессы будут обрабатываться за какой-то фиксированный промежуток времени, часто упоминаемый в технической литературе как дедлайн (с англ. deadline – предельный срок). В системах жесткого реального времени нарушение дедлайнов  приравнивается к отказу системы. В свою очередь мягкая система реального времени допускает небольшие превышение дедлайнов, но только тогда, когда это приводит к допустимому снижению качества работы системы. Например, видеоконференция. Небольшое запаздывание звука или видео не приведет к катастрофическим последствиям.

При компиляции программы ПЛК, он рассчитывает, есть ли необходимые ресурсы для выполнения пользовательских инструкций, после чего переходит к выполнению поставленной задачи в нужный срок.

Программируемый контроллер автоматизации ПКА

Представляет собой цифровой компьютер, включающий в себя функциональные возможности ПЛК. Программируемый контроллер автоматизации понятие относительно недавнее, появившееся в начале 2000-х. В большинстве случаев ПКА представляет собой эволюцию программируемого логического контроллера. ПЛК является мостом между электрической автоматизацией, построенной на реле, и электромеханической программируемой автоматизацией, где акцент делается на программное обеспечение операций (определение, данное 40 лет назад).

Мягкая система реального времени(softPLC)

Как упоминалось выше, мягкая система реального времени не дает гарантии своевременного выполнения поставленной задачи. По этому, их не применяют для систем управления движением. Вместо этого softPLC предпочтительны для подключения связей завод-цех, человеко-машинных интерфейсов, систем диспетчерского контроля и сбора данных (SCADA). Вполне возможно, для некоторых ПКА быть SoftPLC.

Встраиваемые ПК

Встраиваемый промышленный компьютер это не компьютер общего назначения. Он разработан и оптимизирован для одного пользовательского приложения. Все его компоненты, как правило, размещены на одной плате, включая и микроконтроллеры или микропроцессоры, шины ввода/вывода, память и другие пользовательские микросхемы. Устройство включает в себя даже программное обеспечение или прошивку (прошивка обычно находится в ПЗУ или памяти только для чтения). Встроенные ПК (embedded PC) действительно пересечение между аппаратным и программным обеспечением, поскольку существует тесная взаимосвязь между этими двумя частями – одна не может работать без другой. Проекты с использованием встраиваемых ПК могут реагировать на потребности жесткого или мягкого режима реального времени.

Добавить комментарий