Регулирование напряжения в цепях постоянного тока

Довольно большое количество промышленных электроприводов и технологических процессов для своего питания используют постоянный ток. Причем в таких случаях довольно часто необходимо изменять значение этого напряжения. Такие виды транспорта как метрополитен, троллейбусы, электрокары и другие виды транспорта получают питающее напряжения из сетей постоянного тока с неизменным напряжением. Но ведь многие из них нуждаются в изменении значения напряжения, подводимого к якорю электродвигателя. Классическими средствами получения необходимых значений являются резистивное регулирование и система генератор-двигатель, или система Леонардо. Но эти системы являются устаревшими, и встретить их можно довольно редко (особенно систему генератор-двигатель). Более современными и активно внедряемыми сейчас являются системы тиристорный преобразователь-двигатель, импульсный преобразователь двигатель. Рассмотрим каждую систему более подробно.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Резистивно-контакторная схема управления

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Система генератор-двигатель

В такой системе необходимый уровень напряжения формируется путем изменения потока возбуждения генератора:

Система генератор-двигатель с приводным двигателем постоянного тока

Наличие в такой системе трех электромашин, больших массогабаритных показателей и длительного времени ремонта при поломках, а также дорогостоящего обслуживания и большую инерционность такой установки сделали КПД такой машины очень низким. Сейчас систем генератор-двигатель практически не осталось, все они активно заменяются на системы тиристорный преобразователь – двигатель ТП-Д, который обладает рядом преимуществ.

Тиристорный преобразователь – двигатель

Получила свое массовое развитие в 60-х годах, когда начали появляться тиристоры. Именно на их базе были созданы первые статичные маломощные тиристорные преобразователи. Такие устройства подключались напрямую к сетям переменного тока:

Структурная схема тиристорного электпропривода постоянного тока

Регулирование напряжения происходит путем изменения угла открывания тиристора. Регулирование через тиристорный преобразователь имеет ряд преимуществ перед установкой генератор-двигатель, такие как высокое быстродействие и КПД, плавное регулирование напряжения постоянного и много других.

Преобразователь с промежуточным звеном постоянного напряжения

Здесь все немного сложнее. Чтоб получить постоянное напряжение необходимой величины применяют еще вспомогательные устройства, а именно инвертор, трансформатор, выпрямитель:

инвертор в цепи постоянного тока

Здесь постоянный ток преобразуют в переменный с помощью инвертора тока, потом с помощью трансформатора понижают или повышают (в зависимости от надобности), а потом снова выпрямляют. Значительно удорожает установку наличие трансформатора и инвертора, укрупняет систему, чем снижает КПД. Но есть и плюс – гальваническая развязка между сетью и нагрузкой из – за наличия трансформатора. На практике такие устройства встречаются крайне редко.

Импульсные преобразователи постоянного напряжения

Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:

Импульсные преобразователи цепи постоянного тока

Такие системы активно заменяют электроприводы с резистивным регулированием, путем подключения их к якорю машины последовательно, вместо резистивно-контакторной группы. Их довольно часто применяю в электрокарах, а также довольно большую популярность они обрели в подземном транспорте (метрополитен). Такие преобразователи выделяют минимум тепла, что не нагревает тоннелей и могут реализовывать режим рекуперативного торможения, что является большим плюсом для электроприводов с частым пуском и торможением.

Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.

Комментарии к статье “Регулирование напряжения в цепях постоянного тока

  1. Меня интересует схема стабилизации напряжения (13-15в) постоянного тока в цепи возбуждения автомобильного генератора . Я модернизировал генератор, мост выпрямления тока(диоды) вынес в салон. Подачу тока на щетки генератора регулирую эл.лампочками (последовательно включенными щеткам). Проблемой является резкое увеличение напряжения(естественно тока) в сети автомобиля свыше 15 вольт, если не прибегать к ручной регулировке. Ток в цепи возбуждения генератора должен изменятся в пределах 2 ампер, но напряжение быть не более 15 вольт. Просьба предложить простую схему(возможно на триоде), для собственного изготовления из доступных деталей. Спасибо.

Добавить комментарий