Импульсное регулирование скорости вращения асинхронных электродвигателей с короткозамкнутым ротором

Стремление к созданию экономичного, надежного и относительно простого электропривода с широким диапазоном регулирования скорости при отсутствии современной базы электроники привели к разработке импульсного метода регулирования скорости. Сущность данного метода заключается в том, что момент электрической машины периодически изменяется до некоторого значения, превышающее значение статического момента с последующим переходом к значению момента меньше статического. В результате таких манипуляций при установившемся движении среднее значение момента электродвигателя будет равно статическому моменту рабочей машины.

Естественно, что периодическое изменение момента будет приводить к изменению скорости электрической машины в известных пределах. При этом средняя скорость поддерживается на заданном уровне. Колебания значения момента  достигается путем периодического изменения параметров статорной цепи. Получение требуемого значения средней скорости электродвигателя достигается путем изменения соотношения длительности работы машины с различными параметрами за время полного цикла. Импульсное управление осуществляется с помощью быстродействующих реле, контакторов, электромагнитных вибраторов или с помощью полупроводниковых приборов.

Типичные схемы подключения электродвигателя к источнику питания показаны ниже:

Схемы включения для асинхронных машин с КЗ ротором при импульсном регулировании скорости

Из схем видно, что часть цикла электродвигатель подключен непосредственно к источнику питания, другую же часть оказывается подключенным либо через сопротивление (рисунок а)), либо отключен вовсе (рисунок б)), либо же переводится в режим противовключения (рисунок в)). Длительность периода (цикла) tц будет складываться с времени работы с добавочным сопротивлением или отключенного состояния t2 и времени, при котором электродвигатель подключен к источнику питания t1:

Рабочий цикл асинхронной машины при импульсном регулировании

В первую часть цикла t1 момент электрической машины больше статического момента и происходит разгон машины до определенной скорости ω1. Во вторую часть цикла происходит замедление двигателя от скорости ω1 до ω2.

Величиной, характеризующей импульсную работу, является относительная длительность непосредственного подключения машины к источнику энергии, под которым понимают отношение:

Величина характеризующая импульсную работу асинхронной машины

Предполагая, что электродвигатель работает на линейной части механической характеристики, возрастание скорости в первую часть периода и падение во вторую будет происходить по соответствующим экспоненциальным законам. При установившемся процессе скорость в начале периода и в его конце будет одинакова и равна ω2. Процесс колебания скорости относительно среднего значения аналогичен процессу колебания температуры электрической машины, работающей в повторно-кратковременном режиме.

На рисунке ниже показаны колебания скорости относительно ее среднего значения при одинаковых значениях статического момента и длительности цикла, но при различной относительной длительности включения:

Колебание скорости асинхронной машины при импульсном регулировании

При больших значениях электромеханической постоянной привода В по сравнению с длительностью цикла кривизна экспоненциальных участков изменения скорости будет невелика, что позволит заменить их прямыми участками с приемлемой погрешностью. Среднее значение скорости при установившемся значении примерно будет равно:

Среднее значение скорости АД при импульсном регулировании

При установившейся работе среднее значение момента электродвигателя за полный цикл должно быть равно статическому, то есть Мс = Мср.

Если асинхронная машина в первый момент первого отрезка времени развивает момент М1, а в начале второго М2, то средний момент электродвигателя за весь цикл с небольшой погрешностью может быть принят равным:

Средний момент асинхронного электродвигателя при импульсном регулировании скорости

Предположив, что М1 = М2 + (М1 – М2) = М2 +ΔМ и подставив значение момента в выражение (2), получим:

Средний момент асинхронного электродвигателя при импульсном регулировании скорости выраженный через М1

Выражение (3) дает возможность по известным зависимостям М1 = f(ω) и М2 = f(ω) построить механические характеристики машины при импульсном управлении для требуемых значений ε.

При любой скорости значение среднего момента равно:

Средний момент АД при любой скорости вращения при импульсном регулировании

На рисунке ниже построены механические характеристики асинхронной машины при импульсном регулировании по схеме а) для различных значений ε:

Механические характеристики асинхронной машины при импульсном введении сопротивления в цепь статора

Механические характеристики асинхронной машины работающей по схеме б) показаны на рисунке ниже:

Механические характеристики асинхронной машины при импульсном отключении цепи статора

Не сложно построить характеристику и для характеристики в) используя приведенную методику. Механические характеристики асинхронной машины для случая импульсного регулирования путем перевода машины с двигательного в тормозной режимы показаны ниже:

Механические характеристики асинхронной машины при импульсном переключении режимов работы машины

При заданных моментах М1 и М2 и известной зависимости Мс = f(ω), используя выражение (4), можно определить необходимое значение относительного времени включения контактов ε для обеспечения требуемой средней скорости электропривода:

Относительная длительность включения контактов при импульсном регулировании скорости АД

На рисунке ниже показаны механические характеристики для М1, М2 и зависимость Мс = f(ω):

Определение относительной длительности включения при импульсном регулировании скорости АД

Рассмотрев приведенные выше механические характеристики мы видим, что по своему виду они похожи на механические характеристики асинхронной машины при регулировании скорости путем изменения напряжения питающей сети.

Характеристики не могут обеспечить более или менее значительный диапазон регулирования скорости и, кроме того, они обладают большой крутизной. Процесс поддержания постоянства средней скорости электродвигателя типа АЛ32-4 мощностью в Р = 1 кВт и n = 1420 об/мин на уровне nср = 677 об/мин по результатам обработки осциллограммы приведен на рисунке ниже:

Зависимость тока и скорости при импульсном регулировании скорости асинхронной машины

Из рисунка видно, что при поддержании nср = 677 об/мин скорость вращения электродвигателя при работе с 5630 циклов в час колеблется от nмакс = 1015 об/мин до nмин = 339 об/мин. Ток статора за время включения t1 = 0,42 сек и ε = 0,648 меняется от Iмакс = 11,7 А до Iмин = 7,8 А при номинальном токе двигателя Iном  = 4,2 А.

Для ограничения пределов колебаний значением Δn = 75 – 100 об/мин число циклов в час необходимо довести до 10 000 – 12 000 в час.

Помимо неудовлетворительного характера скорости при импульсном управлении крайне неблагоприятно протекает и процесс нагревания электрической машины.

Наличие современных частотных преобразователей, а также наличие таких недостатков в импульсном управлении как значительные колебания скорости и неблагоприятные условия нагрева машины привели к тому, что на практике данный способ практически нигде уже не применяется.

Добавить комментарий