В чем разница между измерением тока и определением положения с помощью датчика Холла?

Измерение во всех его формах является фундаментальным для многих приложений. Это неизменно включает материал, который действует как преобразователь, чтобы преобразовать одно свойство в другое. В электронике чувствительный элемент будет иметь физические свойства, которые изменяются в результате действия датчика, такие как его сопротивление или реактивное сопротивление, позволяющие измерять изменение тока или напряжения.

Эффект Холла

В 1879 году Эдвин Холл обнаружил, что когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, напряжение можно измерять под прямым углом к пути тока. Хорошо известно, что эффект Холла является результатом взаимодействия заряженных частиц, таких как электроны, в ответ на электрические и магнитные поля.

Эффект Холла применительно к датчикам проявляется либо в измеримой разности напряжений на проводнике, через который должен протекать постоянный ток, либо в виде измеримой разности тока в проводнике, через который должно протекать постоянное напряжение (рисунок ниже). Разница напряжений пропорциональна напряженности магнитного поля. Это означает, что эффект Холла можно использовать двумя весьма различными способами, даже если основной эффект одинаков в обоих случаях.

С точки зрения датчиков, эффект Холла представляет собой либо измеримую разницу напряжения на проводнике, через который протекает постоянный ток, либо измеримую разницу тока в проводнике, через который должно течь постоянное напряжение.

Уровень сигнала из-за изменения поля относительно фонового шума невелик (диапазон мкВ). Следовательно, для его использования требуются довольно сложные пути прохождения сигнала.

Не желая никоим образом обесценивать открытия Эдвина Холла, этот эффект действительно является продолжением использования силы Лоренца, которая описывает взаимодействие между электрическими и магнитными силами на точечном заряде из-за изменения электромагнитного поля.

Проще говоря, в случае эффекта Холла сила Лоренца описывает влияние, которое магнитное поле оказывает на заряженную частицу, в частности направление, которое она будет вынуждена принимать, когда проходит через проводник, подверженный воздействию магнитного поля. Физическое движение приводит к большему или меньшему заряду на поверхности проводника, что приводит к разности потенциалов, известному как напряжение Холла.

Измерение тока с помощью эффекта Холла

Тот факт, что эффект Холла зависит от магнитного поля, означает, что его можно использовать в качестве бесконтактной технологии. Таким образом, он не является «навязчивым», в отличие от наиболее распространенного способа измерения тока, который заключается в использовании шунта (низкоомного резистора) и измерении падения напряжения на нем. Использование эффекта Холла для измерения тока по своей природе надежно в приложениях большой мощности, поскольку оно не опирается на потенциал земли в качестве эталона.

Для обычного датчика тока на основе эффекта Холла это означает размещение датчика перпендикулярно магнитному полю и использование концентратора, обычно ферромагнитного сердечника, имеющего форму кольца или квадрата, расположенного вокруг проводника, несущего измеряемый ток (рисунок ниже). Датчик обычно держат в небольшом воздушном зазоре, образованном между двумя концами ферромагнитного сердечника.

Вот сравнение того, как расположены обычные датчики Холла и датчики Холла для определения местоположения

С датчиком тока IMC-Холла чувствительный элемент расположен параллельно протекающему току. В этом случае ферромагнитный сердечник не требуется; однако для защиты от перекрестных помех может потребоваться защита. Это означает, что его можно использовать для измерения тока, протекающего по шине или дорожке печатной платы, просто расположив датчик над шиной или дорожкой. Этот тип датчика активируется технологией IMC-Hall с использованием встроенного магнитного концентратора (IMC), разработанного компанией Melexis.

По сути, это магнитное поле, генерируемое током, который обнаруживается благодаря эффекту Холла, а не самим протекающим током.

Отслеживание местоположения с помощью эффекта Холла

Тот же принцип можно использовать для обнаружения наличия, отсутствия или расстояния до магнитного поля. Фактически напряжение Холла, возникающее в результате движения магнита поверх датчиков, может быть обнаружено, усилено и обработано. Это дает возможность использовать эффект Холла для определения положения или даже ориентации объектов относительно датчика.

В простом приложении это может быть реализовано относительно грубо, например, отслеживание, когда ноутбук открыт или закрыт. Или он может быть более сложным, когда он используется для обнаружения линейного движения или поворота, такого как изменение положения движущегося объекта (рисунок ниже). В этом отношении использование эффекта Холла для определения положения намного более универсально, чем его использование в качестве датчика тока.

Использование эффекта Холла для определения положения намного более универсально, чем его использование в качестве датчика тока

Встроенный магнитный концентратор (IMC)

Одним из недостатков большинства датчиков Холла, который связан с причиной эффекта, является то, что пластина Холла, используемая для определения поля, ограничена только одной осью.

Чтобы устранить этот недостаток, Melexis разработала встроенный магнитный концентратор, или IMC, который делает эффект Холла гораздо более гибким. IMC позволяет датчикам  Холла, оставаясь в плоскости, обнаруживать магнитные поля от осей X, Y и Z (рисунок ниже). Следовательно, преимущества применения многочисленны, включая гибкость ориентации датчика.

Интегрированный магнитный концентратор позволяет датчикам Холла, оставаясь в плоскости, обнаруживать магнитные поля от осей X, Y и Z

Применение эффекта Холла в автомобильной промышленности

Благодаря использованию технологии встроенного магнитного концентратора многие приложения в автомобильной промышленности могут использовать эффект Холла. Работая в трех измерениях, датчик Холла может использоваться для определения положения педалей, вращения рулевой колонки и состояния тормозного рычага, а также положения сидений с электроприводом.

Он также может применяться под капотом для контроля вращающихся частей насосов и двигателей, а также для измерения тока, потребляемого электрифицированными частями силового агрегата, такими как инвертор, система контроля аккумулятора (BMS) или бортовое зарядное устройство (OBC).

Итоги

В основных терминах феномен Холла может быть использован рядом полезных способов, включая измерение тока и определение положения. Несмотря на серьезные проблемы, такие как низкое отношение сигнал / шум или влияние паразитного поля, электронная промышленность преуспела в разработке надежных и точных сенсорных решений, основанных на эффекте Холла.

В частности, добавление мощного аналогового внешнего интерфейса и тракта цифрового сигнала наряду с запатентованными технологиями, такими как IMC-Hall от Melexis, означает, что эффект Холла можно применять для измерения тока и определения местоположения даже в суровых условиях, таких как автомобильная промышленность.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *