Намагниченность. Гиромагнитный эффект и магнитный резонанс
Понятие намагниченности и ее природа

Многие вещества способны оказывать существенное влияние на магнитное поле. Особенно сильно влияют тела ферромагнитные – подобные железу по своим магнитным свойствам,также они могут являться и самостоятельным источником магнитного поля(аналогично сегнето-электрикам).

Вычисление взаимной индуктивности, основанное на выражении векторного потенциала
Вычисление взаимной индуктивности

Поток, создаваемый контуром 2 и сцепленный с контуром 1, можно найти, вычисляя соответствующий векторный потенциал в какой-либо точке первого контура:

Индуктивность, как важный параметр электрической цепи
Понятие индуктивности

Индуктивность – это очень важный интегральный параметр электрических цепей и электромагнитных систем, определяемый из расчета магнитного поля токов.

Закон Джоуля – Ленца
Закон Джоуля-Ленца

Если проводник, в котором течет постоянный ток, и он при этом остается неподвижным, то работа сторонних сил расходуется на его нагревание.

Резонанс при несинусоидальных токах и ЭДС
Несинусоидальный резонанс значительно усложняется тем что резонанс может проходить в отдельно взятых гармониках

Явление резонанса усложняется при несинусоидальных токах и ЭДС, так как появляется возможность резонанса отдельных гармонических составляющих.

Мощность периодических несинусоидальных токов
Мощность периодических несинусоидальных токов

Активную мощность периодического переменного тока произвольной формы можно определить, как среднюю мощность за период:

Высшие гармоники в трехфазных сетях
Появление и влияние высших гармоник на электроприемники в сети

В трехфазных сетях, как правило, кривые напряжения во второй и третьей фазе со сдвигом на треть периода в точности воспроизводят форму кривой напряжения в первой фазе. Например, в фазе А напряжение uA может быть представлено некоторой функцией времени:

Сила тока. Электродвижущая сила. Разность потенциалов
Сила тока

Электрическим током называют упорядоченное движение заряженных частиц (тел). За направление движение электрического тока условно принимают направление движения положительных зарядов. Проходящий через какую-то поверхность электрический ток характеризуется силой тока I. Сила тока является скалярной величиной, численно равная количеству электричества, проходящего через площадь S за единицу времени:

Связь между напряженностью и потенциалом электростатического поля
Связь между напряженностью и потенциалом электростатического поля

Рассмотрим две точки имеющие координаты (x, y, z) и (x + Δx, y ,z) и между которыми перемещается единичный заряд. Работа, которую необходимо совершить против сил электростатического поля, для переноса заряда из одной точки в другую, численно будет равна разности потенциалов в этих точках:

Эквипотенциальные поверхности. Потенциал электростатического поля
Потенциал электрического поля. Эквипотенциальная поверхность

Работа по перемещению заряда из точки А в точку В зависит только от положения точек А и В и не зависит от формы пути, по которому движется пробный заряд. Исходя из этого работа, по перемещению заряда, будет равна убыли потенциальной энергии W данного заряда:

Основы электричества

Как известно, все сложные системы начинаются с простых вещей. Прежде чем понять работу системы автоматического управления каким – либо механизмом необходимо изучить огромное количество предметов – от курса школьной физики до теории автоматического управления. Чтобы безопасно проводить работы с электричеством – необходимо знать основы. В конце концов, изобретение новых элементов и систем невозможно без знания основ. Поэтому в данной категории мы будем рассматривать основы основ явления электричества, основные законы и правила электротехники, без которых невозможно не только разработка и улучшения электронных и электромеханических систем, но и безопасная работа с электроустановками. Данная категория предназначена для помощи в изучении явления электричества для новичков, а также для «бывалых», кто хочет освежить свои знания в данной области.