Определение реактивной мощности

Одной из основных проблем в сети переменного напряжения является наличие реактивной мощности. Она  расходуется только на потери тепловые. Источником реактивной энергии есть  накопители электрической энергии L и С.  Я не буду очень глубоко рассматривать этот вопрос. Предлагаю рассмотреть этот вопрос на примере простых элементов цепи —  индуктивности и емкости.

Индуктивный элемент L

Индуктивный элемент ( рассмотрим на примере  катушки индуктивности) представляют собой витки изолированного между собой провода. При протекании тока катушка намагничивается. Если изменить полярность  источника, катушка начнет отдавать запасенную энергию обратно, стараясь поддержать величину тока в контуре. Поэтому при протекании через нее  переменной составляющей , энергия запасенная при прохождении положительного полупериода, не успеет рассеяться и будет препятствовать прохождению отрицательного полупериода. В результате отрицательному полупериоду придется  погасить энергию запасенную катушкой. В итоге напряжение(U),  будет опережать ток (І) на какой-то угол φ. Ниже  приведен результат моделирования работы на L-R нагрузку  L=1*10-3 Гн, R=0.5 Ом. Uист= 250 В, частота f=50 Гц.

Рисунок 1. Работа источника на R-L нагрузку
Рисунок 1. Работа источника на R-L нагрузку

φ – это разница фаз  между U и  I.

Реактивное сопротивление обозначается буквой X, полное  Z, активное R.

Для  индуктивности :

RM8

RM9

Где ω – циклическая  частота RM3

RM4— частота питающего напряжения,  Гц;

RM5

L – индуктивность катушки;

Вывод: чем выше индуктивность L или частота , тем больше будет сопротивление катушки переменному току.

Емкостной элемент

Емкостной элемент (рассмотрим на примере конденсатора)  представляет собой двухполюсник с переменным или постоянным значением емкости. Конденсатор — накопитель электрических зарядов.  Если подключить  его  к  источнику питания, он зарядится. Если к нему приложить источник с переменной составляющей, он будет заряжаться при прохождении через него положительного полупериода. Когда направление полупериода изменится на отрицательное значение, конденсатор начнет перезаряжаться, то есть энергия, которая накопилась в нем, начнет противодействовать перезарядке. В итоге мы получим напряжение на конденсаторе противоположное  источнику. В результате  І,  будет опережать U на какой- то угол φ. Ниже  приведен результат моделирования работы на С-R нагрузку  С=900*106 Фа, R=0.5 Ом, Uист= 250 В, частота f=50 Гц.

Рисунок 2. Работа источника на R-C нагрузку

 Для емкости:

RM1

RM2

Где ω – циклическая  частота RM3

 

RM4— частота питающего напряжения,  Гц;

RM5

С — емкость конденсатора;

Вывод: чем выше емкость С или частота, тем меньше будет сопротивление переменному току.

Сравнение влияния реактивного сопротивления на активную мощность сети

Из рисунков 1 и 2 видно, что сдвиг фаз на рисунках не одинаков. Вывод — чем больше в полном сопротивлении Z будет влияние XL  или  X тем больше будет разница фаз U и I.

Угол сдвига между током и напряжением называется φ .

Реактивная мощность однофазная:

RM6Трехфазная:

RM7

Uф, Iф — фазные ток и напряжение

Вывод: реактивная мощность – не выполняет полезного действия.

Она «перегоняется» по сети нагревая кабели и увеличивая потери. На крупных промышленных предприятиях это особо ощутимо в силу наличия электроприводов  и других крупных потребителей. Этот вопрос очень актуален для энергосбережения и модернизации производства. Поэтому на пром. предприятиях устанавливаются компенсаторы реактивной мощности. Они могут быть разного типа и кроме компенсации выполнять еще и роль фильтров. С помощью компенсаторов стараются сохранить баланс реактивной мощности для минимизации ее влияния на сеть и подогнать угол φ к нулю.

Для компенсации реактивной мощности необходимо максимально сбалансировать в сети количество (L, C) элементов.

Комментарии к статье “Определение реактивной мощности

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Подтвердите, что Вы не бот — выберите человечка с поднятой рукой: